Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials.
نویسندگان
چکیده
Soft X-ray spectroscopy (SXS) techniques such as photoelectron spectroscopy, soft X-ray absorption spectroscopy and X-ray emission spectroscopy are efficient and direct tools to probe electronic structures of materials. Traditionally, these surface sensitive soft X-ray techniques that detect electrons or photons require high vacuum to operate. Many recent in situ instrument developments of these techniques have overcome this vacuum barrier. One can now study many materials and model devices under near ambient, semi-realistic, and operando conditions. Further developments of integrating the realistic sample environments with efficient and high resolution detection methods, particularly at the high brightness synchrotron light sources, are making SXS an important tool for the energy research community. In this progress report, we briefly describe the basic concept of several SXS techniques and discuss recent development of SXS instruments. We then present several recent studies, mostly in situ SXS experiments, on energy materials and devices. Using these studies, we would like to highlight that the integration of SXS and in situ environments can provide in-depth insight of material's functionality and help researchers in new energy material developments. The remaining challenges and critical research directions are discussed at the end.
منابع مشابه
A Review of the Applications of Synchrotron Radiation in Archaeological Sciences
The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...
متن کاملSynchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.
Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of low...
متن کاملUltra-soft X-ray Emission Spectroscopy a Progress Report
A review is presented on recent developments in ultra-soft x-ray emission spectroscopy. Especially, instrumental developments related to high resolution studies of free molecules and to the use of synchrotron radiation are discussed. The most recent results from three different applications of ultra-soft x-ray emission spectroscopy are presented: electron excited spectra of free molecules, mono...
متن کاملX-ray spectroscopic approaches to the investigation and characterization of photochemical processes.
Despite a wealth of studies exemplifying the utility of the 2-5 keV X-ray range in speciation and electronic structure elucidation, the exploitation of this energy regime for the study of photochemical processes has not been forthcoming. Herein, a new endstation set-up for in situ photochemical soft X-ray spectroscopy in the 2-5 keV energy region at the Stanford Synchrotron Radiation Lightsourc...
متن کاملEnd station for nanoscale magnetic materials study: combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy.
We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was conn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 26 46 شماره
صفحات -
تاریخ انتشار 2014